3.3.35 \(\int \frac {a+b \log (c x^n)}{x^3 (d+e x^2)^3} \, dx\) [235]

3.3.35.1 Optimal result
3.3.35.2 Mathematica [C] (verified)
3.3.35.3 Rubi [A] (verified)
3.3.35.4 Maple [C] (warning: unable to verify)
3.3.35.5 Fricas [F]
3.3.35.6 Sympy [F(-1)]
3.3.35.7 Maxima [F]
3.3.35.8 Giac [F]
3.3.35.9 Mupad [F(-1)]

3.3.35.1 Optimal result

Integrand size = 23, antiderivative size = 162 \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )^3} \, dx=-\frac {3 b n}{4 d^3 x^2}+\frac {a+b \log \left (c x^n\right )}{4 d x^2 \left (d+e x^2\right )^2}+\frac {6 a-b n+6 b \log \left (c x^n\right )}{8 d^2 x^2 \left (d+e x^2\right )}-\frac {12 a-5 b n+12 b \log \left (c x^n\right )}{8 d^3 x^2}+\frac {e \log \left (1+\frac {d}{e x^2}\right ) \left (12 a-5 b n+12 b \log \left (c x^n\right )\right )}{8 d^4}-\frac {3 b e n \operatorname {PolyLog}\left (2,-\frac {d}{e x^2}\right )}{4 d^4} \]

output
-3/4*b*n/d^3/x^2+1/4*(a+b*ln(c*x^n))/d/x^2/(e*x^2+d)^2+1/8*(6*a-b*n+6*b*ln 
(c*x^n))/d^2/x^2/(e*x^2+d)+1/8*(-12*a+5*b*n-12*b*ln(c*x^n))/d^3/x^2+1/8*e* 
ln(1+d/e/x^2)*(12*a-5*b*n+12*b*ln(c*x^n))/d^4-3/4*b*e*n*polylog(2,-d/e/x^2 
)/d^4
 
3.3.35.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.73 (sec) , antiderivative size = 507, normalized size of antiderivative = 3.13 \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )^3} \, dx=\frac {-\frac {8 d \left (a-b n \log (x)+b \log \left (c x^n\right )\right )}{x^2}-\frac {4 d^2 e \left (a-b n \log (x)+b \log \left (c x^n\right )\right )}{\left (d+e x^2\right )^2}-\frac {16 d e \left (a-b n \log (x)+b \log \left (c x^n\right )\right )}{d+e x^2}-48 e \log (x) \left (a-b n \log (x)+b \log \left (c x^n\right )\right )+24 e \left (a-b n \log (x)+b \log \left (c x^n\right )\right ) \log \left (d+e x^2\right )+b n \left (\frac {9 e^{3/2} x \log (x)}{-i \sqrt {d}+\sqrt {e} x}-24 e \log ^2(x)-\frac {4 d (1+2 \log (x))}{x^2}+e \left (\frac {d}{d+i \sqrt {d} \sqrt {e} x}+\log (x)-\frac {d \log (x)}{\left (\sqrt {d}+i \sqrt {e} x\right )^2}-\log \left (i \sqrt {d}-\sqrt {e} x\right )\right )-9 e \log \left (i \sqrt {d}-\sqrt {e} x\right )+e \left (\frac {d}{d-i \sqrt {d} \sqrt {e} x}+\log (x)-\frac {d \log (x)}{\left (\sqrt {d}-i \sqrt {e} x\right )^2}-\log \left (i \sqrt {d}+\sqrt {e} x\right )\right )+\frac {-9 i e^{3/2} x \log (x)+9 i e \left (i \sqrt {d}+\sqrt {e} x\right ) \log \left (i \sqrt {d}+\sqrt {e} x\right )}{\sqrt {d}-i \sqrt {e} x}+24 e \left (\log (x) \log \left (1+\frac {i \sqrt {e} x}{\sqrt {d}}\right )+\operatorname {PolyLog}\left (2,-\frac {i \sqrt {e} x}{\sqrt {d}}\right )\right )+24 e \left (\log (x) \log \left (1-\frac {i \sqrt {e} x}{\sqrt {d}}\right )+\operatorname {PolyLog}\left (2,\frac {i \sqrt {e} x}{\sqrt {d}}\right )\right )\right )}{16 d^4} \]

input
Integrate[(a + b*Log[c*x^n])/(x^3*(d + e*x^2)^3),x]
 
output
((-8*d*(a - b*n*Log[x] + b*Log[c*x^n]))/x^2 - (4*d^2*e*(a - b*n*Log[x] + b 
*Log[c*x^n]))/(d + e*x^2)^2 - (16*d*e*(a - b*n*Log[x] + b*Log[c*x^n]))/(d 
+ e*x^2) - 48*e*Log[x]*(a - b*n*Log[x] + b*Log[c*x^n]) + 24*e*(a - b*n*Log 
[x] + b*Log[c*x^n])*Log[d + e*x^2] + b*n*((9*e^(3/2)*x*Log[x])/((-I)*Sqrt[ 
d] + Sqrt[e]*x) - 24*e*Log[x]^2 - (4*d*(1 + 2*Log[x]))/x^2 + e*(d/(d + I*S 
qrt[d]*Sqrt[e]*x) + Log[x] - (d*Log[x])/(Sqrt[d] + I*Sqrt[e]*x)^2 - Log[I* 
Sqrt[d] - Sqrt[e]*x]) - 9*e*Log[I*Sqrt[d] - Sqrt[e]*x] + e*(d/(d - I*Sqrt[ 
d]*Sqrt[e]*x) + Log[x] - (d*Log[x])/(Sqrt[d] - I*Sqrt[e]*x)^2 - Log[I*Sqrt 
[d] + Sqrt[e]*x]) + ((-9*I)*e^(3/2)*x*Log[x] + (9*I)*e*(I*Sqrt[d] + Sqrt[e 
]*x)*Log[I*Sqrt[d] + Sqrt[e]*x])/(Sqrt[d] - I*Sqrt[e]*x) + 24*e*(Log[x]*Lo 
g[1 + (I*Sqrt[e]*x)/Sqrt[d]] + PolyLog[2, ((-I)*Sqrt[e]*x)/Sqrt[d]]) + 24* 
e*(Log[x]*Log[1 - (I*Sqrt[e]*x)/Sqrt[d]] + PolyLog[2, (I*Sqrt[e]*x)/Sqrt[d 
]])))/(16*d^4)
 
3.3.35.3 Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.08, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {2785, 25, 2785, 27, 2780, 2741, 2779, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )^3} \, dx\)

\(\Big \downarrow \) 2785

\(\displaystyle \frac {a+b \log \left (c x^n\right )}{4 d x^2 \left (d+e x^2\right )^2}-\frac {\int -\frac {6 a-b n+6 b \log \left (c x^n\right )}{x^3 \left (e x^2+d\right )^2}dx}{4 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {6 a-b n+6 b \log \left (c x^n\right )}{x^3 \left (e x^2+d\right )^2}dx}{4 d}+\frac {a+b \log \left (c x^n\right )}{4 d x^2 \left (d+e x^2\right )^2}\)

\(\Big \downarrow \) 2785

\(\displaystyle \frac {\frac {6 a+6 b \log \left (c x^n\right )-b n}{2 d x^2 \left (d+e x^2\right )}-\frac {\int -\frac {2 \left (12 a-5 b n+12 b \log \left (c x^n\right )\right )}{x^3 \left (e x^2+d\right )}dx}{2 d}}{4 d}+\frac {a+b \log \left (c x^n\right )}{4 d x^2 \left (d+e x^2\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {12 a-5 b n+12 b \log \left (c x^n\right )}{x^3 \left (e x^2+d\right )}dx}{d}+\frac {6 a+6 b \log \left (c x^n\right )-b n}{2 d x^2 \left (d+e x^2\right )}}{4 d}+\frac {a+b \log \left (c x^n\right )}{4 d x^2 \left (d+e x^2\right )^2}\)

\(\Big \downarrow \) 2780

\(\displaystyle \frac {\frac {\frac {\int \frac {12 a-5 b n+12 b \log \left (c x^n\right )}{x^3}dx}{d}-\frac {e \int \frac {12 a-5 b n+12 b \log \left (c x^n\right )}{x \left (e x^2+d\right )}dx}{d}}{d}+\frac {6 a+6 b \log \left (c x^n\right )-b n}{2 d x^2 \left (d+e x^2\right )}}{4 d}+\frac {a+b \log \left (c x^n\right )}{4 d x^2 \left (d+e x^2\right )^2}\)

\(\Big \downarrow \) 2741

\(\displaystyle \frac {\frac {\frac {-\frac {12 a+12 b \log \left (c x^n\right )-5 b n}{2 x^2}-\frac {3 b n}{x^2}}{d}-\frac {e \int \frac {12 a-5 b n+12 b \log \left (c x^n\right )}{x \left (e x^2+d\right )}dx}{d}}{d}+\frac {6 a+6 b \log \left (c x^n\right )-b n}{2 d x^2 \left (d+e x^2\right )}}{4 d}+\frac {a+b \log \left (c x^n\right )}{4 d x^2 \left (d+e x^2\right )^2}\)

\(\Big \downarrow \) 2779

\(\displaystyle \frac {\frac {\frac {-\frac {12 a+12 b \log \left (c x^n\right )-5 b n}{2 x^2}-\frac {3 b n}{x^2}}{d}-\frac {e \left (\frac {6 b n \int \frac {\log \left (\frac {d}{e x^2}+1\right )}{x}dx}{d}-\frac {\log \left (\frac {d}{e x^2}+1\right ) \left (12 a+12 b \log \left (c x^n\right )-5 b n\right )}{2 d}\right )}{d}}{d}+\frac {6 a+6 b \log \left (c x^n\right )-b n}{2 d x^2 \left (d+e x^2\right )}}{4 d}+\frac {a+b \log \left (c x^n\right )}{4 d x^2 \left (d+e x^2\right )^2}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {\frac {\frac {-\frac {12 a+12 b \log \left (c x^n\right )-5 b n}{2 x^2}-\frac {3 b n}{x^2}}{d}-\frac {e \left (\frac {3 b n \operatorname {PolyLog}\left (2,-\frac {d}{e x^2}\right )}{d}-\frac {\log \left (\frac {d}{e x^2}+1\right ) \left (12 a+12 b \log \left (c x^n\right )-5 b n\right )}{2 d}\right )}{d}}{d}+\frac {6 a+6 b \log \left (c x^n\right )-b n}{2 d x^2 \left (d+e x^2\right )}}{4 d}+\frac {a+b \log \left (c x^n\right )}{4 d x^2 \left (d+e x^2\right )^2}\)

input
Int[(a + b*Log[c*x^n])/(x^3*(d + e*x^2)^3),x]
 
output
(a + b*Log[c*x^n])/(4*d*x^2*(d + e*x^2)^2) + ((6*a - b*n + 6*b*Log[c*x^n]) 
/(2*d*x^2*(d + e*x^2)) + (((-3*b*n)/x^2 - (12*a - 5*b*n + 12*b*Log[c*x^n]) 
/(2*x^2))/d - (e*(-1/2*(Log[1 + d/(e*x^2)]*(12*a - 5*b*n + 12*b*Log[c*x^n] 
))/d + (3*b*n*PolyLog[2, -(d/(e*x^2))])/d))/d)/d)/(4*d)
 

3.3.35.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2741
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> 
Simp[(d*x)^(m + 1)*((a + b*Log[c*x^n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^( 
m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1]
 

rule 2779
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r 
_.))), x_Symbol] :> Simp[(-Log[1 + d/(e*x^r)])*((a + b*Log[c*x^n])^p/(d*r)) 
, x] + Simp[b*n*(p/(d*r))   Int[Log[1 + d/(e*x^r)]*((a + b*Log[c*x^n])^(p - 
 1)/x), x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]
 

rule 2780
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.))/((d_) + (e_.)* 
(x_)^(r_.)), x_Symbol] :> Simp[1/d   Int[x^m*(a + b*Log[c*x^n])^p, x], x] - 
 Simp[e/d   Int[(x^(m + r)*(a + b*Log[c*x^n])^p)/(d + e*x^r), x], x] /; Fre 
eQ[{a, b, c, d, e, m, n, r}, x] && IGtQ[p, 0] && IGtQ[r, 0] && ILtQ[m, -1]
 

rule 2785
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)* 
(x_)^2)^(q_.), x_Symbol] :> Simp[(-(f*x)^(m + 1))*(d + e*x^2)^(q + 1)*((a + 
 b*Log[c*x^n])/(2*d*f*(q + 1))), x] + Simp[1/(2*d*(q + 1))   Int[(f*x)^m*(d 
 + e*x^2)^(q + 1)*(a*(m + 2*q + 3) + b*n + b*(m + 2*q + 3)*Log[c*x^n]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && ILtQ[q, -1] && ILtQ[m, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 
3.3.35.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.18 (sec) , antiderivative size = 440, normalized size of antiderivative = 2.72

method result size
risch \(-\frac {b \ln \left (x^{n}\right ) e}{4 d^{2} \left (e \,x^{2}+d \right )^{2}}+\frac {3 b \ln \left (x^{n}\right ) e \ln \left (e \,x^{2}+d \right )}{2 d^{4}}-\frac {b \ln \left (x^{n}\right ) e}{d^{3} \left (e \,x^{2}+d \right )}-\frac {b \ln \left (x^{n}\right )}{2 d^{3} x^{2}}-\frac {3 b \ln \left (x^{n}\right ) e \ln \left (x \right )}{d^{4}}+\frac {3 b n e \ln \left (x \right )^{2}}{2 d^{4}}-\frac {3 b n e \ln \left (x \right ) \ln \left (e \,x^{2}+d \right )}{2 d^{4}}+\frac {3 b n e \ln \left (x \right ) \ln \left (\frac {-e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 d^{4}}+\frac {3 b n e \ln \left (x \right ) \ln \left (\frac {e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 d^{4}}+\frac {3 b n e \operatorname {dilog}\left (\frac {-e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 d^{4}}+\frac {3 b n e \operatorname {dilog}\left (\frac {e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 d^{4}}-\frac {5 b n e \ln \left (e \,x^{2}+d \right )}{8 d^{4}}+\frac {b n e}{8 d^{3} \left (e \,x^{2}+d \right )}-\frac {b n}{4 d^{3} x^{2}}+\frac {5 b e n \ln \left (x \right )}{4 d^{4}}+\left (-\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}-\frac {i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}}{2}+b \ln \left (c \right )+a \right ) \left (\frac {e^{2} \left (-\frac {d^{2}}{2 e \left (e \,x^{2}+d \right )^{2}}+\frac {3 \ln \left (e \,x^{2}+d \right )}{e}-\frac {2 d}{e \left (e \,x^{2}+d \right )}\right )}{2 d^{4}}-\frac {1}{2 d^{3} x^{2}}-\frac {3 e \ln \left (x \right )}{d^{4}}\right )\) \(440\)

input
int((a+b*ln(c*x^n))/x^3/(e*x^2+d)^3,x,method=_RETURNVERBOSE)
 
output
-1/4*b*ln(x^n)*e/d^2/(e*x^2+d)^2+3/2*b*ln(x^n)*e/d^4*ln(e*x^2+d)-b*ln(x^n) 
*e/d^3/(e*x^2+d)-1/2*b*ln(x^n)/d^3/x^2-3*b*ln(x^n)/d^4*e*ln(x)+3/2*b*n/d^4 
*e*ln(x)^2-3/2*b*n/d^4*e*ln(x)*ln(e*x^2+d)+3/2*b*n/d^4*e*ln(x)*ln((-e*x+(- 
d*e)^(1/2))/(-d*e)^(1/2))+3/2*b*n/d^4*e*ln(x)*ln((e*x+(-d*e)^(1/2))/(-d*e) 
^(1/2))+3/2*b*n/d^4*e*dilog((-e*x+(-d*e)^(1/2))/(-d*e)^(1/2))+3/2*b*n/d^4* 
e*dilog((e*x+(-d*e)^(1/2))/(-d*e)^(1/2))-5/8*b*n*e/d^4*ln(e*x^2+d)+1/8*b*n 
*e/d^3/(e*x^2+d)-1/4*b*n/d^3/x^2+5/4*b*e*n*ln(x)/d^4+(-1/2*I*b*Pi*csgn(I*c 
)*csgn(I*x^n)*csgn(I*c*x^n)+1/2*I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+1/2*I*b*P 
i*csgn(I*x^n)*csgn(I*c*x^n)^2-1/2*I*b*Pi*csgn(I*c*x^n)^3+b*ln(c)+a)*(1/2*e 
^2/d^4*(-1/2*d^2/e/(e*x^2+d)^2+3/e*ln(e*x^2+d)-2*d/e/(e*x^2+d))-1/2/d^3/x^ 
2-3/d^4*e*ln(x))
 
3.3.35.5 Fricas [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )^3} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x^{2} + d\right )}^{3} x^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))/x^3/(e*x^2+d)^3,x, algorithm="fricas")
 
output
integral((b*log(c*x^n) + a)/(e^3*x^9 + 3*d*e^2*x^7 + 3*d^2*e*x^5 + d^3*x^3 
), x)
 
3.3.35.6 Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )^3} \, dx=\text {Timed out} \]

input
integrate((a+b*ln(c*x**n))/x**3/(e*x**2+d)**3,x)
 
output
Timed out
 
3.3.35.7 Maxima [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )^3} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x^{2} + d\right )}^{3} x^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))/x^3/(e*x^2+d)^3,x, algorithm="maxima")
 
output
-1/4*a*((6*e^2*x^4 + 9*d*e*x^2 + 2*d^2)/(d^3*e^2*x^6 + 2*d^4*e*x^4 + d^5*x 
^2) - 6*e*log(e*x^2 + d)/d^4 + 12*e*log(x)/d^4) + b*integrate((log(c) + lo 
g(x^n))/(e^3*x^9 + 3*d*e^2*x^7 + 3*d^2*e*x^5 + d^3*x^3), x)
 
3.3.35.8 Giac [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )^3} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x^{2} + d\right )}^{3} x^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))/x^3/(e*x^2+d)^3,x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)/((e*x^2 + d)^3*x^3), x)
 
3.3.35.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )^3} \, dx=\int \frac {a+b\,\ln \left (c\,x^n\right )}{x^3\,{\left (e\,x^2+d\right )}^3} \,d x \]

input
int((a + b*log(c*x^n))/(x^3*(d + e*x^2)^3),x)
 
output
int((a + b*log(c*x^n))/(x^3*(d + e*x^2)^3), x)